References

[1] S. Winawer, R. Fletcher, D. Rex,
J. Bond, R. Burt, J. Ferrucci, T. Ganiats, T. Levin, S. Woolf, D. Johnson, L.
Kirk, S. Litin, and C. Simmang, "Colorectal cancer screening and
surveillance: clinical guidelines and rationale-Update based on new
evidence," *Gastroenterology, *vol. 124, pp. 544-60, Feb 2003.

[2] K. D. Bodily, J. G. Fletcher, T.
Engelby, M. Percival, J. A. Christensen, B. Young, A. J. Krych, D. C. Vander
Kooi, D. Rodysill, J. L. Fidler, and C. D. Johnson, "Nonradiologists as
second readers for intraluminal findings at CT colonography," *Acad
Radiol, *vol. 12, pp. 67-73, Jan 2005.

[3] J. G. Fletcher, F. Booya, C. D.
Johnson, and D. Ahlquist, "CT colonography: unraveling the twists and
turns," *Curr Opin Gastroenterol, *vol. 21, pp. 90-8, Jan 2005.

[4] H. Yoshida and A. H. Dachman,
"CAD techniques, challenges, and controversies in computed tomographic
colonography," *Abdom Imaging, *vol. 30, pp. 26-41, Jan-Feb 2005.

[5] H. Yoshida and J. Näppi,
"Three-dimensional computer-aided diagnosis scheme for detection of
colonic polyps," *IEEE Trans Med Imaging, *vol. 20, pp. 1261-74, Dec
2001.

[6] R. M. Summers, C. F. Beaulieu,
L. M. Pusanik, J. D. Malley, R. B. Jeffrey, Jr., D. I. Glazer, and S. Napel,
"Automated polyp detector for CT colonography: feasibility study," *Radiology,
*vol. 216, pp. 284-90, 2000.

[7] R. M. Summers, M. Franaszek, M.
T. Miller, P. J. Pickhardt, J. R. Choi, and W. R. Schindler,
"Computer-aided detection of polyps on oral contrast-enhanced CT
colonography," *AJR Am J Roentgenol, *vol. 184, pp. 105-8, Jan 2005.

[8] G. Kiss, J. Van Cleynenbreugel,
M. Thomeer, P. Suetens, and G. Marchal, "Computer-aided diagnosis in
virtual colonography via combination of surface normal and sphere fitting
methods," *Eur Radiol, *vol. 12, pp. 77-81, Jan 2002.

[9] D. S. Paik, C. F. Beaulieu, G.
D. Rubin, B. Acar, R. B. Jeffrey, Jr., J. Yee, J. Dey, and S. Napel,
"Surface normal overlap: a computer-aided detection algorithm with
application to colonic polyps and lung nodules in helical CT," *IEEE Trans
Med Imaging, *vol. 23, pp. 661-75, Jun 2004.

[10] A. K. Jerebko, R. M. Summers, J.
D. Malley, M. Franaszek, and C. D. Johnson, "Computer-assisted detection
of colonic polyps with CT colonography using neural networks and binary
classification trees," *Med Phys, *vol. 30, pp. 52-60, Jan 2003.

[11] J. Näppi, H. Frimmel, A. H.
Dachman, and H. Yoshida, "A new high-performance CAD scheme for the
detection of polyps in CT colonography," *Medical Imaging 2004: Image
Processing*, 2004, pp. 839-848.

[12] A. K. Jerebko, J. D. Malley, M.
Franaszek, and R. M. Summers, "Multiple neural network classification
scheme for detection of colonic polyps in CT colonography data sets," *Acad
Radiol, *vol. 10, pp. 154-60, Feb 2003.

[13] A. K. Jerebko, J. D. Malley, M.
Franaszek, and R. M. Summers, "Support vector machines committee
classification method for computer-aided polyp detection in CT
colonography," *Acad Radiol, *vol. 12, pp. 479-86, Apr 2005.

[14] V. N. Vapnik, *The nature of
statistical learning theory*, 2nd ed. New York: Springer, 2000.

[15] R. Courant and D. Hilbert, "Methods of Mathematical Physics," vol. 1, pp. 138-140, 1966.

[16] O. L. Mangasarian, A.J. Smola,
and B. Schölkopf, "Sparse kernel feature analysis," *University of
Wisconsin, Tech. Rep. 99-04, *1999.

[17] J. Franc and V. Hlavac,
"Statistical Pattern Recognition Toolbox for Matlab," *http://cmp.felk.cvut.cz/~xfrancv/stprtool/,
*2004.

[18] [On-line], "Partners
Research Computing," *http://www.partners.org/rescomputing/,
*2006.

[19] A. J. Smola, B. Schölkopf, "Sparse
Greedy Matrix Approximation for Machine Learning", *Proc. 17th
International Conf. on Machine Learning*, 2000.

[20] X. Jiang, Y. Motai, R. Snapp, and
X. Zhu, Accelerated Kernel Feature Analysis, *Proc. IEEE Computer Society
Conference on Computer Vision and Pattern Recognition*, pp. 109-116, 2006.

[21] B. Schölkopf and A. J. Smola, Learning with Kernels, MIT Press, 2002.

[22] K. Fukunaga and L. Hostetler. Optimization of k-nearest neighbor density estimates. IEEE transactions

on Information Theory, 19(3):320–326, 1973

[23] J.H. Friedman. Flexible metric nearest neighbor classification. Technical report, Department of

Statistics, Stanford University, Stanford, CA, USA, November 1994.

[24] T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor classification. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 18(6):607–616, 1996.

[25] D.G. Lowe. Similarity metric learning for a variable-kernel classifier. Neural Computation, 7(1):72–85,

1995.

[26] J. Peng, D.R. Heisterkamp, and H.K. Dai. Adaptive kernel metric nearest neighbor classification. In

Proceedings of the Sixteenth International Conference on Pattern Recognition, volume 3, pages

33–36, Qu´ebec City, Qu´ebec, Canada, 11–15 August 2002.

[27] Q.B. Gao, Z.Z. Wang, Center-based nearest neighbor classifier, Pattern Recognition 40(2007) 346–349.

[28] S. Li, J. Lu, Face recognition using the nearest feature line method, IEEE Trans. Neural Networks 10 (2)

(1999) 439–443.

[29] P. Vincent, Y. Bengio, K-local hyperplane and convex distance nearest neighbor algorithms, Advances in

Neural Information Processing Systems (NIPS), vol.14, MIT Press, Cambridge, MA,2002, pp. 985–992.

[30] W. Zheng, L. Zhao, C. Zou, Locally nearest neighbor classifiers for pattern classification, Pattern

Recognition 37 (2004) 1307–1309.

[31] Theodoros Damoulas* and Mark A. Girolami, Probabilistic multi-class multi-kernel learning: on protein

fold recognition and remote homology detection, Vol. 24 no. 10 2008, pages 1264–1270,

doi:10.1093/bioinformatics/btn112.

[32] S. Amari and S. Wu,”Improving Support Vector Machine Classifiers by Modifying Kernel Functions”,

Neural Networks, Vol.6, pp.783-789, 1999.

[33] B. Souza and A. de Carvalho,” Gene selection based on multi-class support vector machines and genetic

algorithms”, Molecular Research, Vol 4, NO.3, pp. 599-607, 2005.

[34] B. Schölkopf and A. J. Smola, Learning with kernels, MIT Press, pp. 211-214, 2002.

[35] Huilin Xiong, Ya Zhang, and Xue-Wen Chen Data-Dependent Kernel Machines for Microarray Data

Classification. In Proceedings of IEEE/ACM Transactions on Computational Biology and

Binformatics, vol. 4, NO. 4, October-December 2007.

[36] H. Xiong, M.N.S. Swamy, and M.O. Ahmad, “Optimizing the Data-Dependent Kernel in the Empirical

Feature Space,” IEEE Trans. Neural Networks, vol. 16, pp. 460-474, 2005.

[37] G.C. Cawley, MATLAB Support Vector Machine Toolbox, School of Information Systems, Univ. of

East Anglia, http://theoval.sys.uea.ac.uk/~gcc/svm/ toolbox, Norwich, U.K., 2000

[38] Y. Raviv and N. Intrator, “Bootstrapping with Noise: An Efficient Regularization Technique,”

Connection Science, vol. 8, pp. 355-372, 1996.

[39] Hans Anton Buchholdt “Structural Dynamics For Engineers” Published by Thomas Telford, 1997

ISBN 0727725599.

[40] Richard O. Duda, Peter E. Hart, David G. Stork.: Pattern Classification (2nd Edition), John Wiley &

Sons Inc., 2001.

[41] Bernhard Schökopf , Alexander J. Smola.: Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning), MIT press,

2002

[42] H. Fröhlich, O. Chapelle, B. Scholkopf.: Feature selection for support vector machines by means of

genetic algorithm, Tools with Artificial Intelligence, Proceedings. 15th. IEEE International Conference,

pp. 142 – 148, 2003

[43] Xue-wen Chen.: Gene selection for cancer classification using bootstrapped genetic algorithms and

support vector machines, The Computational Systems, Bioinformatics Conference. Proceedings IEEE

International Conference, pp. 504 – 505, 2003.

[44] Chanho Park and Sung-Bae Cho.: Genetic search for optimal ensemble of feature-classifier pairs in

DNA gene expression profiles, Neural Networks, 2003. Proceedings of the International Joint

Conference, vol.3, pp. 1702 – 1707, 2003.

[45] Firooz A. Sadjadi “Polarimetric Radar Target Classification Using Support Vector Machines” Optical

engineering 47(4), 046201 April 2008.

[46] Tom Briggs, Tim Oates, “Discovering Domain Specific Composite Kernels”.

S. Myla is with the School of Engineeing, Virginia Commonwealth University, Richmond, VA 23284 USA.

[†] Y. Motai is with the School of Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA.

A. Docef is with the School of Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA.

[‡] J. Näppi is with the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA.

[§] H. Yoshida is with the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA.